Industry News, Trends and Technology, and Standards Updates

iNEMI Announces New Board of Directors

Posted by Kimberly Daich; Director of Marketing on Apr 17, 2020 11:00:00 AM

Ranjan-chatterjeeCimetrix is proud to announce that Ranjan Chatterjee, Executive Vice President of Smart Factory Solutions at Cimetrix, has been newly elected to the iNEMI Board of Directors. 

iNEMI, The International Electronics Manufacturing Initiative is a not-for-profit, highly efficient R&D consortium of approximately 90 leading electronics manufacturers, suppliers, associations, government agencies and universities.

iNEMI roadmaps the future technology requirements of the global electronics industry, identifies and prioritizes technology and infrastructure gaps, and helps eliminate those gaps through timely, high-impact deployment projects. These projects support their members' businesses by accelerating deployment of new technologies, developing industry infrastructure, stimulating standards development, and disseminating efficient business practices. They also sponsor proactive forums on key industry issues and publish position papers to focus industry direction.

In the official press release from iNEMI, they explain “The iNEMI Board plays an integral role in the governance of our organization,” said Marc Benowitz, CEO. “They provide oversight for our operations, including decisions regarding policy, strategy and direction of the consortium. These recently elected individuals bring a high caliber of leadership, as well as supply chain diversity, to our Board. We welcome the new and returning Directors and look forward to working with them.”

In addition to being elected to the Board of Directors, Mr. Chatterjee has also had the opportunity to Co-Chair the Smart Manufacturing Roadmap with Dan Gamota from Jabil.

Cimetrix is excited to play a role in the ongoing mission of iNEMI.

 

Topics: Industry Highlights, Doing Business with Cimetrix, Smart Manufacturing/Industry 4.0, SMT/PCB/PCBA

Leveraging Cimetrix EquipmentTest to Develop a Reliable SMT-ELS Interface

Posted by Jesse Lopez: Software Engineer on Oct 31, 2019 12:45:00 PM

Recently, I had the opportunity to participate in the development, testing, and integration of the Cimetrix ELS library that encompasses the SEMI A1, A1.1, and A2 (SMT-ELS) standards. It’s been exciting to see how ELS has increasingly been embraced as a connectivity solution for electronic manufacturing equipment.

I was first introduced to the SMT-ELS standard in June 2019 by Alan Weber (VP, New Product Innovations, Cimetrix). To begin, I obtained a functioning ELS implementation from Siemens Japan as well as the needed hardware. To make sure I fully understood ELS, I attended a 2-day class presented by Siemens and began studying the ELS standard and the Siemens ELS implementation.

It took a significant amount of time to get familiar with Siemens Implementation and gain an understanding of what they did to support the ELS standard. Siemens Japan has done a great job with their SEMI SMT-ELS implementation, and their assistance with my efforts is greatly appreciated. Once I felt familiar enough with ELS, I built a SMEMA interface driver to simulate the conveyor signals.

Using the SMT-ELS communications library, the Cimetrix development team designed a sample equipment application which I was able to use for initial connectivity testing. At first, it was fairly difficult to get the two libraries to communicate. However, when I used the Cimetrix EquipmentTestTM software, I was able to find defects in our library, which were quickly and easily resolved by our development team. 

While it was beneficial to have a known ELS implementation to test against, it is now clear how valuable using a testing tool would be for anyone creating or validating their own SEMI SMT-ELS implementation.

Even though the SEMI A1, A1.1 and A2 standards are not long, they are dense. As adoption of these standards increases, it becomes paramount that equipment manufactures can test their SMT-ELS implementations during development. It is not effective or efficient for equipment manufacturers to test against other equipment as their primary form of testing. This is why the Cimetrix EquipmentTest SMT-ELS plug-in is so valuable.

I am currently working on test are written in C# and the code is easy to follow. The tests are split into two categories; one for horizontal communication between equipment ,and vertical communication to a factory system.

Horizontal Tests

For Panel Transfer verification, EquipmentTest connects to the first and last equipment in the line. This allows EquipmentTest to send messages to the first equipment and validate the format and content of the message from the last equipment. HCConnectionDiagram-1-1

For this test, the user defines the panel parameters. The panel is sent to the first equipment. Once the last equipment in the line sends the panel to EquipmentTest, the Material Data Content is verified. 

In addition to actual tests, EquipmentTest can be used to send user defined atomic messages such as SetMDMode.

Vertical Tests

EquipmentTest Connects directly to the vertical port of the equipment. Using EquipmentTest, I can set and validate the Net Configuration.

The EquipmentTest software has been pivotal in developing and test our SMT-ELS Implementation. A demonstration of EquipmentTest SMT-ELS and the Cimetrix EquipmentConnectTM SMT-ELS software will be given at Productronica from November 12-15, 2019 in Munich, Germany. Please drop by our booth any time, or feel free to set up an appointment in advance. We look forward to meeting with you and discussing your ELS needs!

Meet with Us

 

Topics: Industry Highlights, Doing Business with Cimetrix, Smart Manufacturing/Industry 4.0, Cimetrix Products, SMT/PCB/PCBA

The Smart Factory in the Cloud

Posted by Mike Motherway: Product Owner and Application Manager on Aug 14, 2019 11:30:00 AM

cloud-computing-1There are some of us in the software development community who recall when cloud computing was not much more than a marketing buzzword, mocked by many developers with first-hand experience at the pace of change in the internet age, but maybe not quite enough experience to know better. Today, cloud-enabled architectures are so commonplace that it’s the alternatives that must be defended in most quarters. Although not necessarily in manufacturing.

In parallel to cloud computing, Industry 4.0 and Smart Manufacturing are happening, and the effects are becoming more apparent and impossible to ignore. Fewer people are mocking I4.0 and Smart Manufacturing as buzzwords. More often, they are being better defined as a set of useful principles and applied to real-world problems with exciting results.The confluence of I4.0 and cloud computing is a rather rare intersecting set. For many manufacturers, it’s a bit much. Those of us working in this area understand the famous quote (mis)attributed to Mahatma Gandhi: “First they ignore you, then they mock you, then they fight you, then you win.” The fight is underway; the confluence of cloud computing and Smart Manufacturing are the focus of this writing.

During the Industry 3.0 changes, when computers were introduced in a significant wayts themselves all changed. Now that Industry 4.0 is upon us, it is the networking of these machines that is driving the change. The network effect is easy enough to understand, but the resulting change is bound to have ripple effects across the industry that will be hard to predict.

Something similar happened a decade ago with cloud computing. At first, the strategy and benefits were understood as simply renting compute power from a third party. “Cloud is just someone else’s computers” was a common refrain among IT professionals. This was true enough at first, when moving to the cloud was done as a “lift-and-shift” strategy. This meant you should take one app, run it on similar platforms in the cloud, save a few bucks, repeat. However, very quickly some very innovative companies realized that the flexibility, scalability and number of new services provided by public cloud vendors meant that applications would have to be re-architected to exploit these possibilities. The software industry is still discovering all the possibilities of the resulting SaaS models. Salesforce, Netflix, Amazon and a few others saw the possibilities, built their apps and services, and the rest of us are still learning.

digital-padlock-securityAt Cimetrix we have some experience working with manufacturers who are stepping into this area of I4.0 / cloud confluence. Our sense is that the conversations occur along the similar lines of pursuit. The first topics of conversation revolve around fear – security being the chief concern. How can a factory allow its data to leave the four walls? Two recent events have made this argument easier to overcome: TSMC had to shut down a major part of its operations in the summer of 2018 when a computer virus, installed on a new tool, spread to many other hosts. Hundreds of millions of dollars in shipment delays and other costs resulted from a breach of what had previously been thought to be a secure factory environment. On the cloud side: The Capital One breach, where one million social security numbers were stolen, had initial headlines that related it to the Amazon cloud. Since then, the bank has admitted fault and it has become clear that AWS services are secure.

Two critical elements important to the security argument are 1) employing talented security professionals and 2) deploying critical security patches as soon as vulnerabilities are discovered. The public cloud vendors recognized this long ago and hence their data centers employ security measures beyond the affordability of most business. Factories that continue to host their applications on premises, as opposed to the cloud, are increasingly competing with cloud vendors for security talent. These cloud vendors have massive scale and are still growing at ~40% per year. The result of this is that your apps and data are increasingly safer in the cloud than on an “on-prem” server.

Red_smart_factoryOnce these fears are assuaged the next line of reasoning tends towards identifying opportunities. This is where Cimetrix is uniquely positioned. We have the expertise to connect factory equipment, get the data into the cloud, and show our customers how to begin exploiting these technologies. Very often the first step is simply to connect as much factory equipment as possible, get a few simple messages, and expand later. This option has proven very fruitful for distributed supply chains that utilize contract manufacturing and outsourcing. Knowing the rate at which equipment is being utilized, which can be done with as few as two simple messages, can be extremely useful. Negotiating capital budgets for new products tends to improve when utilization rates for existing equipment are well known to all parties. The ROI for projects like this tends to be of the scale of months or weeks, not years.

After proving the ROI this way, with only a few simple messages, the next steps typically involve gathering more data. This is where the real power of cloud computing can be brought to bear. Smart factory computing implies the application of intelligence at the factory level to create a dynamic production environment where reducing costs and improving quality happens extremely quickly. Machine learning and very good AI tools are being developed now by the public cloud companies and to this author seem to be perfectly suited to factory data. “Big data” doesn’t get much bigger than the myriad of sensors already at work in a typical factory, pumping out immense amounts of data. Getting this data into the cloud and closing the loop back to factory equipment will benefit the first adopters in ways similar to the early cloud computing innovators.

Ten years ago innovative companies made a kind of leap, and re-architecting applications for the cloud brought large benefits. We see a similar leap coming for manufacturers who are willing to innovate with the help of these new cloud services. It’s not difficult to imagine how Amazon’s ecommerce engine has benefited from customer data to recommend just the right brand of beer to an on-line buyer of a Manchester United t-shirt. A data scientist I knew once said, “the algorithm says that when it’s raining in England we should recommend this beer. I don’t care why as long as it sells.” This same algorithm is on its way to a factory near you. Although instead of online conversions of browsers into buyers, these algorithms will be tweaked to focus on yields, cycle times, and utilization rates.

There are many other arguments for cloud computing which we ignore here. Arguments in favor of availability, scalability, compliance, ease of deployment, etc. These are all true but better addressed in many other venues. This is likewise the case for Industry 4.0; it is a younger sibling topic as compared to cloud computing, but still better fleshed out in other writings. We at Cimetrix are confident that when we look back 10 years from now, the companies that innovate best at this confluence of technologies will realize an immense potential. 

To learn more, or to schedule a consultation, please click below.

Ask an Expert

 

Topics: Doing Business with Cimetrix, Smart Manufacturing/Industry 4.0, SMT/PCB/PCBA

New SEMI Standards for Flow Manufacturing Automation Demonstrated at JISSO PROTEC!

Posted by Alan Weber: Vice President, New Product Innovations on Jun 26, 2019 10:59:00 AM

Jisso-ProtecCimetrix attended the recent JISSO PROTEC exhibition (June 5-7, 2019) at the Tokyo Big Sight International Exhibition Center to see the latest developments in SMT (Surface Mount Technology) manufacturing… and witnessed a truly compelling demonstration of the new SEMI Flow Manufacturing communications standards in action.

Jisso-1The new suite of standards is named SMT-ELS (Surface Mount Technology-Equipment Link Standards), and includes SEMI A1/1.1 as a lower-level messaging standard with SEMI A2 SMASH (Surface Mount Assembler Smart Hookup) defining the content of the messages required to configure an SMT manufacturing line and automate the material and information transfer among all equipment in that line. This is depicted in the figure below.

Jisso-2

The demonstration itself included placement equipment from 4 large equipment suppliers—Fuji, JUKI, Panasonic, and Yamaha—as well as load/unload stations and a bar code reader at the beginning of the line (see picture below). Each of these companies had implemented the “horizontal” (machine-to-machine) communications according to the SMT-ELS standards. The demonstration consisted of an operator scanning one of the stack of input boards with the barcode reader, placing it on the loader conveyor, and then watching as each piece of equipment automatically adjusted its internal conveyor to accept the board, run through its part placement recipe, and pass the board to the next equipment in the line, finally arriving at the unload station conveyor after a minute or so.

Jisso-3

Jisso-4

Before a fully automated multi-vendor production SMT line can be implemented, more work on the standards is necessary, especially in the area of error handling and recovery. In addition, the suppliers of other (non-placement) equipment types must adopt this approach. However, given the factory benefit of mixing equipment from multiple suppliers to optimize line performance for a specific set of products, this is only a matter of time.

If you want to know more about the status and outlook of these standards, and how they can be implemented in your equipment or factory, please contact us.

Contact Us

Topics: Industry Highlights, Events, Global Services, Smart Manufacturing/Industry 4.0, SMT/PCB/PCBA

SEMICON West 2018 Pre-Show

Posted by Kimberly Daich; Director of Marketing on Jul 5, 2018 12:29:00 PM

SEMICON West 2018 Beyond SmartSEMICON West 2018 is fast approaching and the Cimetrix team is gearing up for a great show.  The show runs from July 10th – 12th at the Moscone Center in San Francisco and we’re looking forward to meeting with all our present and future clients.

This year SEMICON West is unveiling the new Smart Manufacturing Pavilion to showcase the entire manufacturing process from silicon to systems, including Front End, Back End and PCB Assembly. Cimetrix is excited to announce that we are a sponsor and will be participating in the Smart Manufacturing Pavilion showcase, both as part of the Front End segment as well as in the PCB Assembly area.

The Smart Manufacturing Pavilion includes a “Meet the Experts Theater” featuring presentations from two of our own Cimetrix thought leaders.  Alan Weber will present “Making Smart Manufacturing Work: The Stakeholder-driven Requirements Development Process” on Wednesday, July 11th at 11:00 am. This process has already been used successfully to support the significant growth of SEMI EDA standards usage in Asia, but is equally relevant for a wide range of related Smart Manufacturing technologies.

Later on Wednesday afternoon at 3:00 pm, Ranjan Chatterjee and Dan Gamota of Jabil will present “Convergence of Technologies and Standards Across the Semiconductor, SMT and OSAT Segments.” 

Cimetrix will be exhibiting at booth #1122 in the South Hall, just a short walk from the Smart Manufacturing Pavilion. Stop by our booth or find us at the Pavilion to talk to our experts about your specific needs. We will have onsite product demonstrations as well as information about our company available.  You can also schedule in advance a time to meet with us at the show by filling out a quick form with your meeting request.  

Schedule a Meeting

See you at SEMICON!

Topics: Semiconductor Industry, EDA/Interface A, Events, Smart Manufacturing/Industry 4.0, SMT/PCB/PCBA

Implementing GEM on your Manufacturing Equipment

Fuji SMT machine 3.jpgAs an OEM, implementing GEM on your equipment can seem like a daunting task. However, as GEM gains popularity in your industry, your customers may start requiring your equipment to be “GEM Compliant”.

So, what does it take to implement GEM on your equipment and become “GEM Compliant”? To answer this question, let’s first understand GEM.

Officially titled the “Generic Model for Communication and Control of Manufacturing Equipment,” GEM is a SEMI standard (E30), which defines standard methods to communicate with host software for monitoring and/or controlling purposes. Essentially, GEM provides a common language for a host system to communicate with the various equipment in a factory. 

Next, let’s understand why customers are demanding your equipment to be GEM Compliant.

As industry trends such as Industry 4.0, Smart Factory, and Big Data drive data exchange and process automation in manufacturing, factories desire to connect each machine to their network for data collection and control. Essentially, factory equipment is added to the “Internet of Things” – also called IIOT - Industrial Internet of Things.  

GEM is a powerful enabler for factories to implement these industry trends. A factory no longer needs to develop disparate/custom interfaces to communicate with different equipment types. A factory can develop common applications to communicate to all equipment via a single common GEM protocol. Originally, GEM was widely adopted in the Semiconductor Front End industry followed later by the Photovoltaic and LED industries. Recently the PCB industry selected GEM as their standard. And GEM is quickly gaining adoption in other electronics industries such as Semiconductor Back End, Flat Panel Display, and Surface Mount Technology.

By connecting GEM equipment, factories can immediately experience operational benefits. Examples of such benefits are:…

  • Ensure recipe (aka process program) correctness and track when recipes are changed/revised
  • Monitor equipment performance to calculate Overall Equipment Effectiveness (OEE) metrics
  • Gather real-time data variables to implement Statistical Process Control (SPC) for key processes
  • Broadcast equipment alarms to immediately notify personnel when equipment requires assistance
  • Collect equipment parameters to drive preventative maintenance plans

Now that we understand GEM, we can explain the term “GEM Compliance”.

GEM Compliance is defined in the SEMI E30 GEM standard. To be “GEM Compliant” means your equipment implements a specific set of capabilities called “Fundamental GEM Requirements”. Your equipment may also implement optional features called “Additional Capabilities”. The SEMI E30 standard provides a list of all GEM features, as listed below.

gem compliance.png
Per Table 11 Section 8.4.3. of the document "SEMI E30-0307E2"

So, how do you become “GEM Compliant”?

As mentioned above, to be GEM compliant, the equipment must implement the eight capabilities listed under Fundamental GEM Requirements. If one of the fundamental capabilities is not implemented, then you cannot say the equipment is GEM compliant.  However, each capability listed under Additional Capabilities is optional. Implementing GEM also means implementing the other SEMI standards that GEM is based on including: E4 (SECS-I), E5 (SECS-II)E37(HSMS), E37.1 (HSMS-SS). In addition, depending on your industry, there may be additional standard to adhere to.

All-in-all, there are 100’s of standards pages filled with requirements and implementation information. Reading and implementing all the requirements defined in those standards may require extensive time. However, toolkits such as our CIMConnectTM product greatly reduce the number of people and time needed to implement a fully GEM compliant interface.

A simple GEM interface that only implements the Fundamental capabilities can be completed relatively quickly. However, a toolkit like CIMConnect enables a small team of one or two people to implement a fundamental interface in even less time. CIMConnect reduces time by implementing the GEM features that are common to all equipment, and providing API to implement the capabilities unique to your equipment. Toolkits also provide several utilities to help become GEM compliant. For example, one of the fundamental GEM requirements is to provide a GEM interface manual with each equipment. CIMConnect provides a template and a documentation builder to help create your manual. These tools reduce the time to create a GEM interface manual from weeks to hours. With products like CIMConnect, a more complex GEM interface can be implemented in just a couple weeks.

Whether you use CIMConnect or an in-house solution, the process for developing a GEM interface is roughly the same:

  • Define and Document GEM interface
  • Implement GEM interface
  • Test GEM interface
  • Customer accepts GEM interface

Defining and documenting the GEM interface of the equipment should be first because it helps to reduce feature creep, keep the project on course, and ensure the project is completed on time. Implementing the GEM interface is often the largest part of the process. Since no two equipment are alike, programming is required to customize the GEM interface for your equipment. It is common to test the GEM interface as each feature is implemented. Testing ensures your GEM implementation is compliant with the GEM standard and is defect free. Some use a completely manual testing process that can take weeks, but we recommend creating automated tests that can be built with our Cimetrix HostConnectTM product. Automated testing allows defects to be detected and fixed quickly; preventing unexpected development costs down the line. Once you believe your interface is free of defects, it’s time to get acceptance from your customer.

To ensure continued success, it is important for your GEM product supplier to provide training and on-going product support. Proper training and support from your GEM supplier allows you to provide continuous support to your customers.

Congratulations – you are on your way to being able to make your equipment “GEM Compliant”.  You can successfully meet your customers’ requirements while keeping your team’s resources on their core competency. 

Topics: SECS/GEM, Smart Manufacturing/Industry 4.0, SMT/PCB/PCBA